Adenocarcinoma classification should be easy

Los Angeles Society Of Pathologists January 25, 2014

Sanja Dacic, MD, PhD University of Pittsburgh Medical Center

OUTLINE

- IASLC/ATS/ERS classification of lung adenocarcinomas
- Practical issues
 - Invasion
 - Histological subtyping
- Subtyping on cytology specimens

WHO 2004

classification of lung adenocarcinomas

- Mixed subtype
- Bronchioloalveolar carcinomas (in situ)
- Acinar
- Papillary
- Solid
- Fetal
- Mucinous (colloid)
- Mucinous cystadenocarcinoma
- Signet ring
- Clear cell

IASLC/ATS/ERS classification of lung adenocarcinoma

- Obsolete terms
 - Bronchioloalveolar carcinoma (BAC)
 - terms AIS (adenocarcinoma in situ) and minimally invasive adenocarcinoma (MIS) introduced
 - Mixed subtype adenocarcinoma
 - comprehensive histologic subtyping and classification by the predominant subtype
- Provides <u>guidelines</u> for resection and small biopsies/cytology specimens

IASLC/ATS/ERS classification of lung adenocarcinoma for resection specimens

PREINVASIVE LESIONS

- Atypical adenomatous hyperplasia
- Adenocarcinoma in situ (AIS) (formerly BAC)
 - Non-mucinous; mucinous

MINIMALLY INVASIVE ADENOCARCINOMA (MIA)

- A lepidic predominant tumor with ≤ 5 mm invasion
 - Non-mucinous; mucinous
- INVASIVE ADENOCARCINOMA

Travis WD et al. JTO 2011; 6(2):244-285.

PROBLEM 1

How to separate AIS from minimally invasive adenocarcinoma (MIA) ?

Adenocarcinoma in situ (AIS) (formerly known as BAC)

Definition:

- A localized small (≤ 3.0 cm) adenocarcinoma with growth restricted to neoplastic cells along pre-existing alveolar structures (lepidic growth) lacking stromal, vascular or pleural invasion
- 100% disease-free specific survival if completely resected

Minimally invasive adenocarcinoma (MIA)

Definition

- Solitary and discrete, ≤ 3.0 cm with a predominantly lepidic pattern and ≤ 5 mm invasion in <u>any one focus</u>
- 100% disease-free specific survival if completely resected

DEFINITION OF INVASIVE COMPONENT

- Histologic subtypes other than a lepidic pattern
- Desmoplastic reaction
- MIA is excluded if the tumor shows
 - AL invasion
 - Pleural invasion
 - Tumor necrosis

HISTOLOGIC SUBTYPES SUPPORTING INVASION

ACINAR

MICROPAPILLARY

SOLID

DESMOPLASTIC REACTION

DESMOPLASTIC REACTION

Invasion vs. stromal collapse/central sclerosis

COLLAPSE

Basement membrane stains

COLLAPSE

How to separate AIS from MIA ?

- The diagnosis of AIS cannot be established with certainty on cytology or small biopsy specimens
- Small tumors (3 cm or less) and tumors with a dominant lepidic growth should be entirely submitted
- More aggressive search for stromal, vascular and pleural invasion (e.g. ancillary studies as a routine work up)

PROBLEM 2

What is the reproducibility of invasion criteria?

Typical (easy) cases

UNANIMOUS NON-INVASIVE

IASLC Pathology Committee, October 2010;

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

UNANIMOUS NON-INVASIVE

IASLC Pathology Committee, October 2010

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

UNANIMOUS INVASION

IASLC Pathology Committee, October 2010

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

UNANIMOUS INVASION

IASLC Pathology Committee, October 2010

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

Difficult cases

≥10 for invasion and ≥ 10 for noninvasion

IASLC Pathology Committee, October 2010

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

27

≥10 for invasion and ≥ 10 for noninvasion

IASLC Pathology Committee, October 2010

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

Stroma can be an issue...

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

Pre-existing lung architectural changes

REPRODUCIBILITY OF INVASION

- "typical" cases
 - κ=0.55±0.06

- "difficult" cases
 - κ=0.08±0.02

Thunissen E. et al. Mod Pathol 2012; 25:1574-83.

PATHOLOGISTS CAN BE DIVIDED....

INVASIVE ADENOCARCINOMA

- The term "predominant" is appended to all categories of invasive adenocarcinoma
- Recording the percentages of the various histologic types in 5% increments (not just the most predominant type)
- No established histologic or cytologic grading criteria exists for lung adenocarcinoma

IASLC/ATS/ERS classification of lung adenocarcinoma

SUBTYPES

- Lepidic predominant (formerly non-mucinous BAC pattern)
- Acinar predominant
- Papillary predominant
- Micropapillary predominant
- Solid predominant

VARIANTS

- Mucinous adenocarcinoma (formerly mucinous BAC)
- Colloid
- Fetal (low and high grade)
- Enteric

IASLC/ATS/ERS classification and survival

IASLC/ATS/ERS	Number	Disease-free			
Classification subtypes	(%)	survival at 5 years			
Low Grade					
Adenocarcinoma in situ	1 (0.2%)	100%			
Minimally invasive	7 (1%)	100%			
adenocarcinoma, non-mucinous	adenocarcinoma, non-mucinous				
Minimally invasive	1 (0.2%)	100%			
adenocarcinoma, mixed mucinous					
and non-mucinous					
Intermediate Grade					
Lepidic predominant	29(6%)	90%			
Acinar predominant	232 (45%)	84%			
Papillary predominant	143 (28%)	83%			
High Grade					
Micropapillary predominant	12(2%)	67%			
Solid predominant	67 (13%)	70%			
Colloid predominant	9 (2%)	71%			
Invasive mucinous	13 (3%)	76%			
adenocarcinoma, mixed					
mucinous/non-mucinous					

PROBLEM 3

What is the reproducibility of histological subtyping of lung adenocarcinoma?

REPRODUCIBILITY OF HISTOLOGICAL SUBTYPING

Submitted pattern	Single pattern (%)	Predominant pattern (%)
Acinar (n=20)	17/26 (65)	25/26 (96)
Lepidic (n=19)	11/26 (42)	24/26 (92)
Micropapillary (n=16)	3/26 (12)	16/26 (62)
Papillary (n=19)	5/26 (19)	25/26 (96)
Solid (n=20)	17/26 (65)	26/26 (100)

"typical" cases	к=0.77±0.06
"difficult" cases	κ=0.38±0.14

MICROPAPILLARY vs. PAPILLARY

LEPIDIC VS. PAPILLARY

PROBLEM 4

Can morphological subtyping be applied to small cytology/biopsy specimens?

MORPHOLOGIC ADENOCARCINOMA PATTERNS CLEARLY PRESENT

 Adenocarcinoma, describe identifiable patterns present

ADENOCARCINOMA, ACINAR PATTERN

Cytology images courtesy of Dr. Sara Monaco, UPMC

ADENOCARCINOMA, PAPILLARY PATTERN

Cytology images courtesy of Dr. Sara Monaco, UPMC

How accurate is subtyping on the cytology/small biopsy specimens?

WHAT DO YOU THINK?

WHAT DO YOU THINK?

ACINAR PATTERN

Histologic-cytologic correlation

Histologic pattern	Concordant (N=26)	Discordant (N=32)	Cytologic classification in discordant cases (N)
Solid	6 (23%)	8 (25%)	Acinar (7); papillary (1)
Acinar	18 (69%)	6 (19%)	Solid (5); papillary (1)
Papillary	1 (4%)	6 (19%)	Acinar (5); mucinous (1)
Lepidic	0	7 (22%)	Acinar (5); solid (1); papillary (1)
Mucinous	1 (4%)	4 (12%)	Acinar (2); solid (1); lepidic (1)
Clear cell	0	1 (3%)	Acinar (1)

SPECIMEN CELLULARITY AND SUBTYPING

Number of tumor cells on cytology smears

NON-SMALL CELL CARCINOMA, FAVOR ADENOCARCINOMA

Cytology images courtesy of Dr. Sara Monaco, UPMC

ANCILLARY STUDIES

FREQUENCY OF ANCILLARY STUDIES

Adenocarcinoma classification on cytology specimens

Ocque R. et al . AJCP 2011; 136 (1):81-7

Squamous cell carcinoma classification on cytology specimens

TWO SCENARIOS WHEN COMMENT SHOULD BE MADE

Morphology SQC and ADC present

IHC favor both ADC and SQC component

NSCLC, NOS Comment: tumor may represent adenosquamous carcinoma

OTHER SUGGESTIONS FOR GOOD PRACTICE

- The term large cell carcinoma should not be used for diagnosis in small biopsy or cytology specimens
- The term non-squamous cell carcinoma should not be used by pathologists in diagnostic reports
- Tumors with sarcomatoid features should be regarded as ADC or SQC; or "poorly differentiated NSCLC with giant and/or spindle cell features"
- NE markers should be used only if NE morphology is suspected

SUMMARY

- Histological subtyping of invasive adenocarcinoma has prognostic significance
- Reproducibility of subtyping on resection and cytology/small specimens is poor
- IHC should be used only when morphological classification is difficult