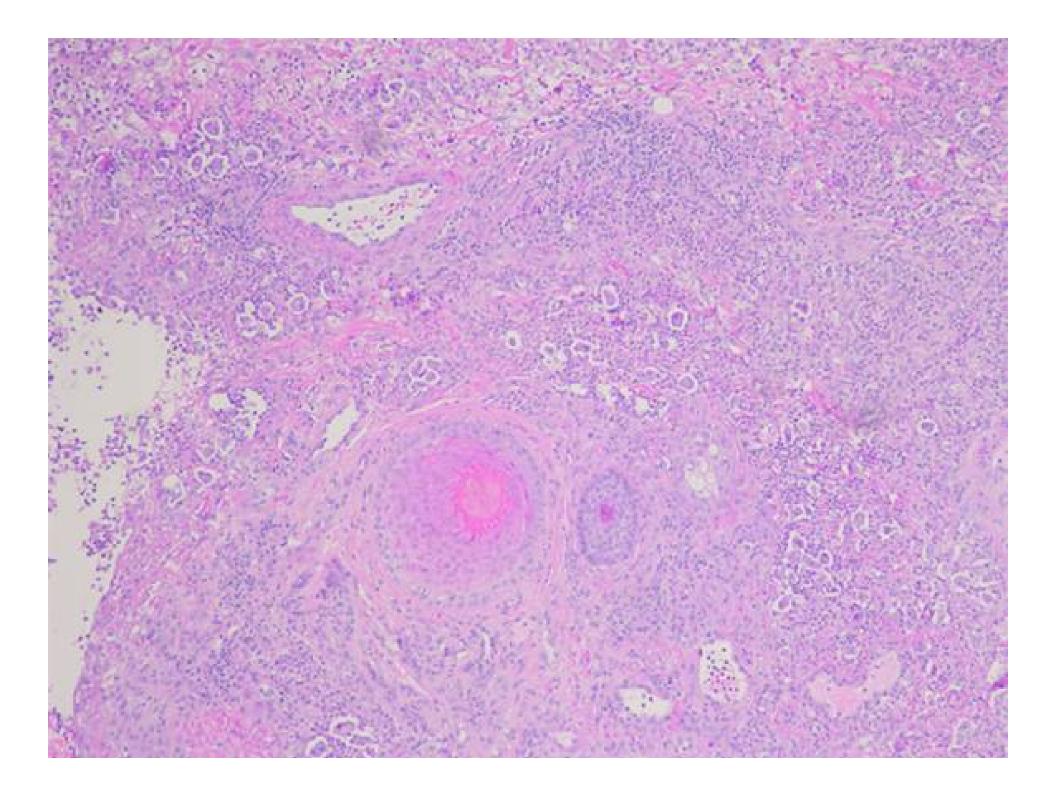
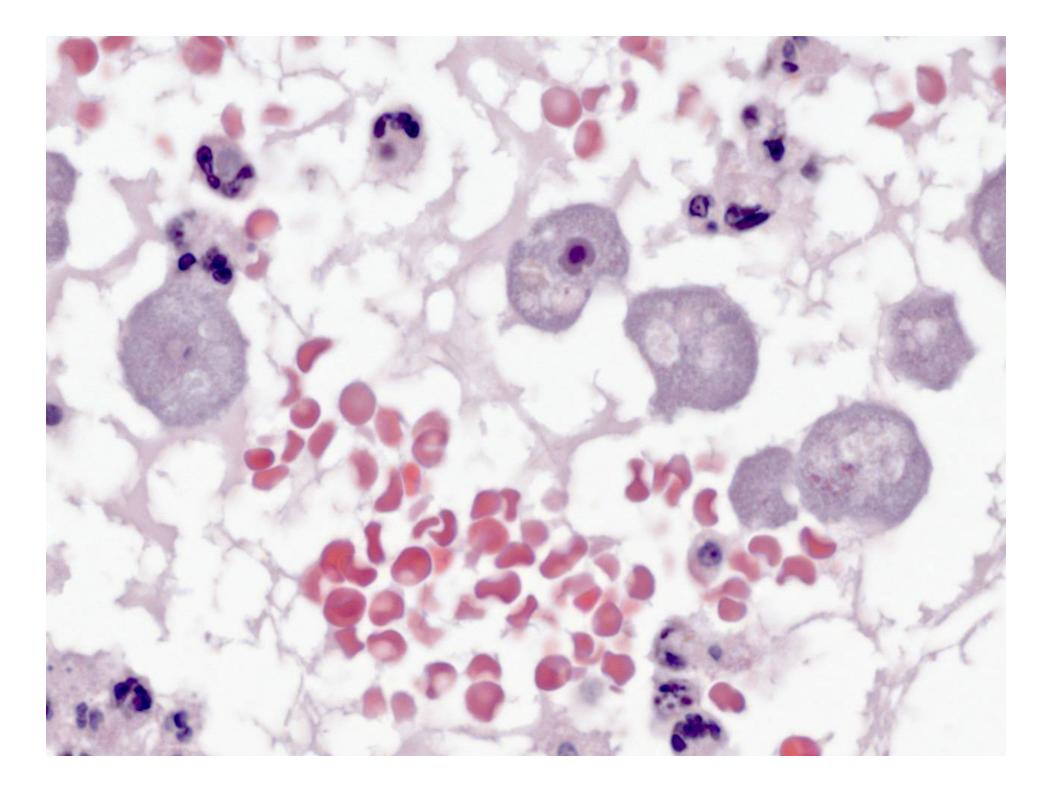
LASOP Case Presentation

Andrea D'Auria, D.O.
University of Southern California
Department of Pathology


Clinical Presentation


- 62 year old male
 - With a history of idiopathic pulmonary fibrosis
 - 2 months status post bilateral lung transplant
 - Diagnosed with acute rejection, on high doses of immunosuppressants
 - Presented to hospital with bilateral chest skin lesions

Skin Lesions

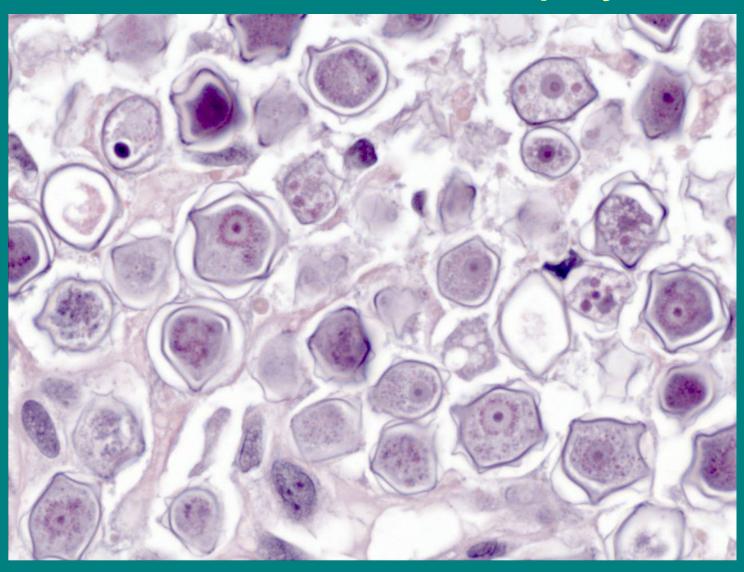
- Erythematous nodules which enlarged
- Drained serous fluid after three weeks

Diagnosis

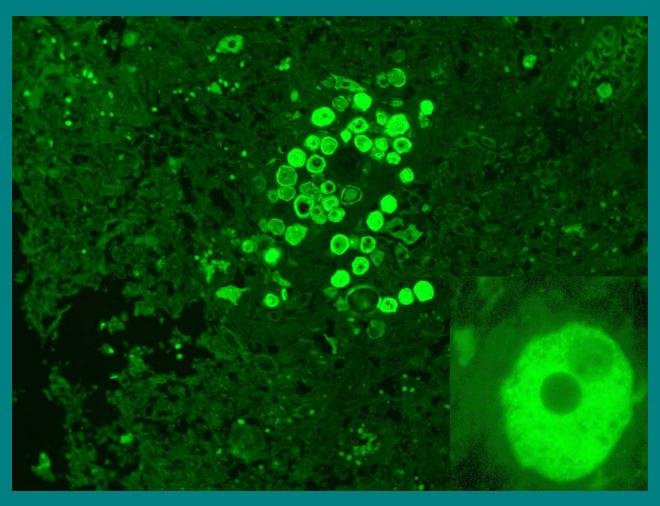
- Cutaneous amoebiasis
 - Acanthamoeba
 - Confirmed via PCR (CDC)

Special Stains

CD 68	Negative
PAS	Negative
AFB	Negative
GMS	Negative


More History

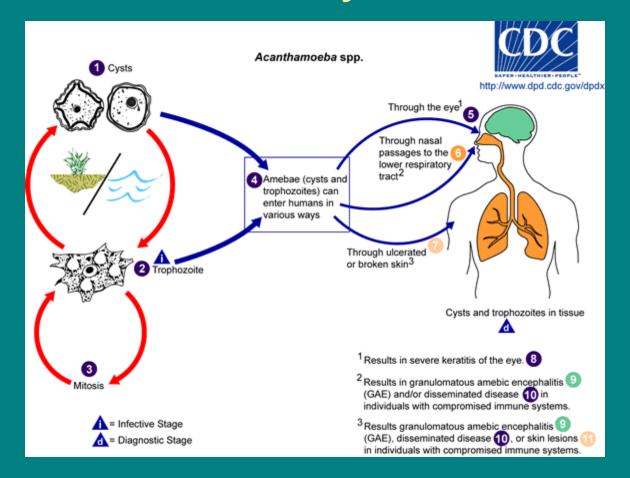
- After a week of hospitalization
 - The patient developed another lesion
 - The patient became altered


New Skin Lesion

Second Skin Biopsy

Anti-Acanthamoeba Antibody

MRI


CSF

Acanthamoeba

- Ubiquitous
- Can cause
 - Keratitis
 - Granulomatous Amoebic Encephalitis (GAE)
- May harbor organisms
- Healthy individuals have serum antibodies

Life Cycle

www.dpd.cdc.gov/dpdx

Pathogenicity

- Portals of entry
 - Skin
 - Paranasal sinuses / Respiratory tract
- Cutaneous extension may precede dissemination by weeks to months
- Once disseminated, almost uniformally fatal

GAE

- Seen in immunocompromised patients
 - AIDS
 - Organ transplants
 - Chemotherapy/radiation
- Host cannot mount immune response
 - Macrophages are not primed
 - Immunosuppressed cannot form granulomas
- Use of multiple antibiotics can predispose

Morphology

- Necrotic ulceration
- Mixed inflammatory infiltrate
- Granulomas may not be present
- Organisms 10-60 micrometers
 - Prominent round/ovoid nucleus
 - Central prominent nucleolus forming halo
 - May phagocytize red cells or neutrophils
 - Occasional double-walled cysts
- Speciation cannot be achieved by morphology alone
 - Balamuthia mandrillaris has same nuclear features

Special Stains

- PAS/GMS may be positive
- CD68 to rule out macrophages
- Gram stain
- AFB
- IHC stains available

Diagnosis

- High index of suspicion
 - Immunocompromised patients
- Non-healing skin ulcers
- Negative stains for other microorganisms
 - Ddx
 - Fungus
 - Macrophages
 - Vasculitis
 - Bacillary angiomatosis
- Confimed by PCR or IHC stains

Summary

- Acanthamoebae are ubiquitous
- Opportunistic infection in immunosuppressed patients
- May disseminate from skin lesions
- Once disseminated, almost always fatal
- Morphologically bland
- Special stains to rule out other diagnoses
- Can be confirmed by PCR
- High index of suspicion necessary for quick diagnosis

Acknowledgements

- Gene Kim, MD
- Daniel Buxton, MD
- Jamie Lin, MD
- Craig Rohan, MD
- Eric Broxham, MD
- Melanie Osby, MD
- Parakarma Chandrasoma, MD

References

- Steinberg, J.P., Galindo, R.L., Kraus, S., Khalil, G.G., Disseminated Acanthamebiasis in a Renal Transplant Recipient with Osteomyelitis and Cutaneous Lesions: Case Report and Literature Review, Clinical Infectious Disease, 2002; 35: 43-49.
- Walia, R., Montoya, J.G., Visvesvera, G.S., Boonton, G.C., Doyle, R.L., A case of successful treatment of cutaneous Acanthamoeba infection in a lung transplant recipient, Transplant Infectious Disease, 2006, 9: 51-54.
- da Rocha Azevedo, B., Tanowitz, H.B., Marciano-Cabral, F., Diagnosis of Infections Caused by Pathogenic Free-Living Amoebae, Interdisciplinary Perspectives on Infectious Diseases, 2009, Article ID 251406.
- Visvesvara, G.S., Moura, H., Schuster, F.L., Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea, Federation of European Microbiological Societies, 2007, vol 50 1-26.
- Walochnik, J., Obwaller, A., Gruber, F., Mildner, M., Tschachler, El, Suchomel, M., Duchene, M., Auer, H., Anti-Acanthamoeba efficacy and toxicity of miltefosine in an organotypic skin equivalent, Journal of Antimicrobial Chemotherapy, 2009, vol 64, 539-545.
- Aichelburg, A.C., Walochnik, J., Assadian, O., Prosch, H., Steuer, A., Perneczky, G., Visvesvara, G.S., Aspock, H., Vetter, N., Successful Treatment of Disseminated Acanthamoeba sp. Infection with Miltefosine, Emerging Infectious Diseases, 2008, vol 14, no. 11.

References, cont.

- Duarte, A.G., Sattar, F., Granwehr, B., Aronson, J.F., Wang, Z., Lick, S., Disseminated Acanthamoebiasis after Lung Transplantation, The Journal of Heart and Lung Transplantation, 2006, 237-240.
- Gullett, J., Mills, J., Hadley, K., Podemski, B., Pitts, L., Gelber, R., Disseminated Granulomatous Acanthamoeba Infection Presenting as an Unusual Skin Lesion, American Journal of Medicine, 1979, vol 67, 891-896.
- Pritzker, A.S., Kim, B.K., Agrawal, D., Southern, P.M., Pandya, A.G., Fatal granulomatous amebic encephalitis caused by Balamuthia mandrillaris presenting as a skin lesion, Journal of the American Academy of Dermatology, 2004, vol 50, no 2, 38-41.
- MacLean, R.C., Hafez, N., Tripathi, S., Childress, C.G., Ghatak, N.R., Marciano-Cabral, F., Identification of Acanthamoeba sp. in paraffin-embedded CNS tissue from an HIV+ individual by PCR, Diagnostic Microbiology and Infectious Disease, 2007, vol 57, 289-294.
- Torno, M.S. Jr, Babapour, R., Gurevitch, A., Witt, M.D., Cutaneous acanthamebiasis in AIDS, Journal of the American Academy of Dermatology, 2000, vol 42, 351-354.
- Marciano-Cabral, F., Puffenbarger, R., Cabral, G.A., The Increasing Importance of Acanthamoeba Infections, Journal of Eukaryotic Microbiology, 2000, vol 47, 29-36.